Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
1.
Transfusion ; 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38644556

RESUMO

BACKGROUND: Blood typing is essential for safe transfusions and is performed serologically or genetically. Genotyping predominantly focuses on coding regions, but non-coding variants may affect gene regulation, as demonstrated in the ABO, FY and XG systems. To uncover regulatory loci, we expanded a recently developed bioinformatics pipeline for discovery of non-coding variants by including additional epigenetic datasets. METHODS: Multiple datasets including ChIP-seq with erythroid transcription factors (TFs), histone modifications (H3K27ac, H3K4me1), and chromatin accessibility (ATAC-seq) were analyzed. Candidate regulatory regions were investigated for activity (luciferase assays) and TF binding (electrophoretic mobility shift assay, EMSA, and mass spectrometry, MS). RESULTS: In total, 814 potential regulatory sites in 47 blood-group-related genes were identified where one or more erythroid TFs bound. Enhancer candidates in CR1, EMP3, ABCB6, and ABCC4 indicated by ATAC-seq, histone markers, and co-occupancy of 4 TFs (GATA1/KLF1/RUNX1/NFE2) were investigated but only CR1 and ABCC4 showed increased transcription. Co-occupancy of GATA1 and KLF1 was observed in the KEL promoter, previously reported to contain GATA1 and Sp1 sites. TF binding energy scores decreased when three naturally occurring variants were introduced into GATA1 and KLF1 motifs. Two of three GATA1 sites and the KLF1 site were confirmed functionally. EMSA and MS demonstrated increased GATA1 and KLF1 binding to the wild-type compared to variant motifs. DISCUSSION: This combined bioinformatics and experimental approach revealed multiple candidate regulatory regions and predicted TF co-occupancy sites. The KEL promoter was characterized in detail, indicating that two adjacent GATA1 and KLF1 motifs are most crucial for transcription.

2.
PLoS Comput Biol ; 20(3): e1011977, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38512997

RESUMO

A key element for successful blood transfusion is compatibility of the patient and donor red blood cell (RBC) antigens. Precise antigen matching reduces the risk for immunization and other adverse transfusion outcomes. RBC antigens are encoded by specific genes, which allows developing computational methods for determining antigens from genomic data. We describe here a classification method for determining RBC antigens from genotyping array data. Random forest models for 39 RBC antigens in 14 blood group systems and for human platelet antigen (HPA)-1 were trained and tested using genotype and RBC antigen and HPA-1 typing data available for 1,192 blood donors in the Finnish Blood Service Biobank. The algorithm and models were further evaluated using a validation cohort of 111,667 Danish blood donors. In the Finnish test data set, the median (interquartile range [IQR]) balanced accuracy for 39 models was 99.9 (98.9-100)%. We were able to replicate 34 out of 39 Finnish models in the Danish cohort and the median (IQR) balanced accuracy for classifications was 97.1 (90.1-99.4)%. When applying models trained with the Danish cohort, the median (IQR) balanced accuracy for the 40 Danish models in the Danish test data set was 99.3 (95.1-99.8)%. The RBC antigen and HPA-1 prediction models demonstrated high overall accuracies suitable for probabilistic determination of blood groups and HPA-1 at biobank-scale. Furthermore, population-specific training cohort increased the accuracies of the models. This stand-alone and freely available method is applicable for research and screening for antigen-negative blood donors.


Assuntos
Antígenos de Plaquetas Humanas , Antígenos de Grupos Sanguíneos , Humanos , Antígenos de Grupos Sanguíneos/genética , Bancos de Espécimes Biológicos , Tipagem e Reações Cruzadas Sanguíneas , Genótipo , Transfusão de Sangue , Antígenos de Plaquetas Humanas/genética
3.
Vox Sang ; 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326223

RESUMO

BACKGROUND AND OBJECTIVES: Polymorphic molecules expressed on the surface of certain blood cells are traditionally categorized as blood groups and human platelet or neutrophil antigens. CD36 is widely considered a platelet antigen (Naka ) and anti-CD36 can cause foetal/neonatal alloimmune thrombocytopenia (FNAIT) in CD36-negative pregnant women. CD36 is used as a marker of differentiation in early erythroid culture. During the experimental culture of CD34+ cells from random blood donors, we observed that one individual lacked CD36. We sought to investigate this observation further and determine if CD36 fulfils the International Society of Blood Transfusion criteria for becoming a blood group. MATERIALS AND METHODS: Surface markers were monitored by flow cytometry on developing cells during the erythroid culture of CD34+ cells. Genetic and flow cytometric analyses on peripheral blood cells were performed. Proteomic datasets were analysed, and clinical case reports involving anti-CD36 and foetal anaemia were scrutinized. RESULTS: Sequencing of CD36-cDNA identified homozygosity for c.1133G>T/p.Gly378Val in the CD36-negative donor. The minor allele frequency of rs146027667:T is 0.1% globally and results in abolished CD36 expression. CD36 has been considered absent from mature red blood cells (RBCs); however, we detected CD36 expression on RBCs and reticulocytes from 20 blood donors. By mining reticulocyte and RBC datasets, we found evidence for CD36-derived peptides enriched in the membrane fractions. Finally, our literature review revealed severe cases of foetal anaemia attributed to anti-CD36. CONCLUSIONS: Based on these findings, we conclude that CD36 fulfils the criteria for becoming a new blood group system and that anti-CD36 is implicated not only in FNAIT but also foetal anaemia.

5.
Transfusion ; 63(12): 2297-2310, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37921035

RESUMO

BACKGROUND: Accurate blood type data are essential for blood bank management, but due to costs, few of 43 blood group systems are routinely determined in Danish blood banks. However, a more comprehensive dataset of blood types is useful in scenarios such as rare blood type allocation. We aimed to investigate the viability and accuracy of predicting blood types by leveraging an existing dataset of imputed genotypes for two cohorts of approximately 90,000 each (Danish Blood Donor Study and Copenhagen Biobank) and present a more comprehensive overview of blood types for our Danish donor cohort. STUDY DESIGN AND METHODS: Blood types were predicted from genome array data using known variant determinants. Prediction accuracy was confirmed by comparing with preexisting serological blood types. The Vel blood group was used to test the viability of using genetic prediction to narrow down the list of candidate donors with rare blood types. RESULTS: Predicted phenotypes showed a high balanced accuracy >99.5% in most cases: A, B, C/c, Coa /Cob , Doa /Dob , E/e, Jka /Jkb , Kna /Knb , Kpa /Kpb , M/N, S/s, Sda , Se, and Yta /Ytb , while some performed slightly worse: Fya /Fyb , K/k, Lua /Lub , and Vel ~99%-98% and CW and P1 ~96%. Genetic prediction identified 70 potential Vel negatives in our cohort, 64 of whom were confirmed correct using polymerase chain reaction (negative predictive value: 91.5%). DISCUSSION: High genetic prediction accuracy in most blood groups demonstrated the viability of generating blood types using preexisting genotype data at no cost and successfully narrowed the pool of potential individuals with the rare Vel-negative phenotype from 180,000 to 70.


Assuntos
Antígenos de Grupos Sanguíneos , Humanos , Antígenos de Grupos Sanguíneos/genética , Genótipo , Fenótipo , Doadores de Sangue , Reação em Cadeia da Polimerase
6.
Transfusion ; 63(10): 1951-1961, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37694916

RESUMO

BACKGROUND: Correct ABO blood-group matching between donor and patient is crucial for safe transfusions. We investigated the underlying reason causing inconclusive ABO serology in samples referred to our laboratory. STUDY DESIGN AND METHODS: Flow cytometric analysis, ABO genotyping, and sequencing were used to characterize ABO-discrepant blood samples (n = 13). ABO gene variants were inserted in a GFP-containing bicistronic vector to assess A/B expression following overexpression in HeLa cells. RESULTS: Seven novel alleles with nonsense mutations predicted to truncate the encoded ABO glycosyltransferases were identified. While these variants could represent O alleles, serology showed signs of ABO glycosyltransferase activity. ABO*A1.01-related alleles displayed remarkably characteristic percentages of A-positive cells for samples with the same variant: c.42C>A (p.Cys14*; 10%), c.102C>A (p.Tyr34*; 31%-32%, n = 2), c.106dup (p.Val36Glyfs*21; 16%-17%, n = 3) or c.181_182ins (p.Leu61Argfs*21; 12%-13%, n = 2). Transfection studies confirmed significantly decreased A expression compared to wild type. The remaining variants were found on ABO*B.01 background: c.1_5dup (pGly3Trpfs*20), c.15dup (p.Arg6Alafs*51) or c.496del (p.Thr166Profs*26). Although the absence of plasma anti-B was noted overall, B antigen expression was barely detected on erythrocytes. Overexpression confirmed decreased B in two variants compared to wildtype while c.1_5dup only showed a non-significant downward trend. CONCLUSION: Samples displaying aberrant ABO serology revealed seven principally interesting alleles. Despite the presence of truncating mutations, normally resulting in null alleles, low levels of ABO antigens were detectable where alterations affected ABO exons 1-4 but not exon 7. This is compatible with the previously proposed concept that alternative start codons in early exons can be used to initiate the translation of functional ABO glycosyltransferase.


Assuntos
Antígenos de Grupos Sanguíneos , Glicosiltransferases , Humanos , Alelos , Glicosiltransferases/genética , Genótipo , Fenótipo , Células HeLa , Sistema ABO de Grupos Sanguíneos/genética
7.
Nat Commun ; 14(1): 5001, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37591894

RESUMO

Genetic determinants underlying most human blood groups are now clarified but variation in expression levels remains largely unexplored. By developing a bioinformatics pipeline analyzing GATA1/Chromatin immunoprecipitation followed by sequencing (ChIP-seq) datasets, we identify 193 potential regulatory sites in 33 blood-group genes. As proof-of-concept, we aimed to delineate the low-expressing complement receptor 1 (CR1) Helgeson phenotype on erythrocytes, which is correlated with several diseases and protects against severe malaria. We demonstrate that two candidate CR1 enhancer motifs in intron 4 bind GATA1 and drive transcription. Both are functionally abolished by naturally-occurring SNVs. Erythrocyte CR1-mRNA and CR1 levels correlate dose-dependently with genotype of one SNV (rs11117991) in two healthy donor cohorts. Haplotype analysis of rs11117991 with previously proposed markers for Helgeson shows high linkage disequilibrium in Europeans but explains the poor prediction reported for Africans. These data resolve the longstanding debate on the genetic basis of inherited low CR1 and form a systematic starting point to investigate the blood group regulome.


Assuntos
Células Eritroides , Fator de Transcrição GATA1 , Receptores de Complemento 3b , Humanos , População Africana , Biologia Computacional , Fator de Transcrição GATA1/genética , Fator de Transcrição GATA1/metabolismo , Genótipo , Íntrons , Fenótipo , Receptores de Complemento 3b/genética , Receptores de Complemento 3b/metabolismo , Sequenciamento de Cromatina por Imunoprecipitação , Células Eritroides/metabolismo , População Europeia
8.
Vox Sang ; 118(8): 690-694, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37265146

RESUMO

BACKGROUND AND OBJECTIVES: The extremely rare Rhnull phenotype is characterized by the absence of all Rh antigens on erythrocytes. It is divided into the regulator and amorph types based on the underlying genetic background. The more common regulator type depends on critical variants silencing RHAG, which encodes RhAG glycoprotein, necessary for RhD/RhCE expression. Rhnull cells have altered expression of glycophorin B and LW glycoprotein. MATERIALS AND METHODS: Four unrelated Rhnull individuals were investigated. Serological testing was performed according to standard blood bank practice. RHD/RHCE and S/s allele-specific Polymerase chain reaction (PCR) genotyping was done on genomic DNA using in-house PCR assays. RHAG, and in some cases also RHD/RHCE, were sequenced. Initial s phenotyping results triggered additional serological investigation. RESULTS: Anti-Rh29 was identified in all four individuals. Extended typing with anti-S and anti-s showed that the three samples predicted to type as s+ failed to react with 2 of 5 anti-s. Sequence analysis of all 10 RHAG exons and the immediate intron/exon boundaries revealed a single nucleotide variant in the 3'-end of intron 6, c.946 -2a>g in all samples. RHD/RHCE showed no alterations. CONCLUSION: A novel Nordic Rhnull allele was identified. In addition, it was shown that s+ Rhnull red blood cells are not only U- but also have qualitative changes in their s antigen expression.


Assuntos
Antígenos de Grupos Sanguíneos , Sistema do Grupo Sanguíneo Rh-Hr , Sistema do Grupo Sanguíneo Rh-Hr/genética , Fenótipo , Sequência de Bases , Reação em Cadeia da Polimerase
9.
Pathogens ; 12(6)2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37375493

RESUMO

Babesia is spread to humans via ticks or blood transfusions. Severity of Plasmodium falciparum malaria is strongly correlated to the ABO blood group of the patient. Babesia divergens is an intraerythrocytic parasite with many similarities to malaria, but the impact of ABO on the susceptibility to and progression of the infection in humans is unknown. We have now cultured B. divergens in human group A, B and O erythrocytes in vitro and measured rates of multiplication. The predilection for the different erythrocyte types was also determined using an in vitro erythrocyte preference assay when the parasites were grown in group A, B or O erythrocytes over time and then offered to invade differently stained erythrocytes of all the blood types at the same time. The results showed no difference in multiplication rates for the different blood types, and the parasite exhibited no obvious morphological differences in the different blood types. When cultured first in one blood type and then offered to grow in the others, the preference assay showed that there was no difference between the A, B or O blood groups. In conclusion, this indicates that individuals of the different ABO blood types are likely to be equally susceptible to B. divergens infections.

10.
Am J Transplant ; 23(4): 512-519, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36732087

RESUMO

ABO compatibility is important for kidney transplantation, with longer waitlist times for blood group B kidney transplant candidates. However, kidneys from non-A1 (eg, A2) subtype donors, which express less A antigen, can be safely transplanted into group B recipients. ABO subtyping is routinely performed using anti-A1 lectin, but DNA-based genotyping is also possible. Here, we compare lectin and genotyping testing. Lectin and genotype subtyping was performed on 554 group A deceased donor samples at 2 transplant laboratories. The findings were supported by 2 additional data sets of 210 group A living kidney donors and 124 samples with unclear lectin testing sent to a reference laboratory. In deceased donors, genotyping found 65% more A2 donors than lectin testing, most with weak lectin reactivity, a finding supported in living donors and samples sent for reference testing. DNA sequencing and flow cytometry showed that the discordances were because of several factors, including transfusion, small variability in A antigen levels, and rare ABO∗A2.06 and ABO∗A2.16 sequences. Although lectin testing is the current standard for transplantation subtyping, genotyping is accurate and could increase A2 kidney transplant opportunities for group B candidates, a difference that should reduce group B wait times and improve transplant equity.


Assuntos
Transplante de Rim , Humanos , Genótipo , Incompatibilidade de Grupos Sanguíneos , Doadores de Tecidos , Doadores Vivos , Sistema ABO de Grupos Sanguíneos/genética , Isoanticorpos
11.
Transfusion ; 63(1): 47-58, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36271437

RESUMO

BACKGROUND: Previous studies have reported Blood type O to confer a lower risk of SARS-CoV-2 infection, while secretor status and other blood groups have been suspected to have a similar effect as well. STUDY DESIGN AND METHODS: To determine whether any other blood groups influence testing positive for SARS-CoV-2, COVID-19 severity, or prolonged COVID-19, we used a large cohort of 650,156 Danish blood donors with varying available data for secretor status and blood groups ABO, Rh, Colton, Duffy, Diego, Dombrock, Kell, Kidd, Knops, Lewis, Lutheran, MNS, P1PK, Vel, and Yt. Of these, 36,068 tested positive for SARS-CoV-2 whereas 614,088 tested negative between 2020-02-17 and 2021-08-04. Associations between infection and blood groups were assessed using logistic regression models with sex and age as covariates. RESULTS: The Lewis blood group antigen Lea displayed strongly reduced SARS-CoV-2 susceptibility OR 0.85 CI[0.79-0.93] p < .001. Compared to blood type O, the blood types B, A, and AB were found more susceptible toward infection with ORs 1.1 CI[1.06-1.14] p < .001, 1.17 CI[1.14-1.2] p < .001, and 1.2 CI[1.14-1.26] p < .001, respectively. No susceptibility associations were found for the other 13 blood groups investigated. There was no association between any blood groups and COVID-19 hospitalization or long COVID-19. No secretor status associations were found. DISCUSSION: This study uncovers a new association to reduced SARS-CoV-2 susceptibility for Lewis type Lea and confirms the previous link to blood group O. The new association to Lea could be explained by a link between mucosal microbiome and SARS-CoV-2.


Assuntos
Antígenos de Grupos Sanguíneos , COVID-19 , Síndrome Pós-COVID-19 Aguda , Humanos , Sistema ABO de Grupos Sanguíneos , Antígenos de Grupos Sanguíneos/genética , Estudos de Coortes , COVID-19/sangue , COVID-19/genética , Síndrome Pós-COVID-19 Aguda/sangue , Síndrome Pós-COVID-19 Aguda/genética , SARS-CoV-2 , Predisposição Genética para Doença
14.
Vox Sang ; 117(11): 1332-1344, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36121188

RESUMO

BACKGROUND AND OBJECTIVES: Under the ISBT, the Working Party (WP) for Red Cell Immunogenetics and Blood Group Terminology is charged with ratifying blood group systems, antigens and alleles. This report presents the outcomes from four WP business meetings, one located in Basel in 2019 and three held as virtual meetings during the COVID-19 pandemic in 2020 and 2021. MATERIALS AND METHODS: As in previous meetings, matters pertaining to blood group antigen nomenclature were discussed. New blood group systems and antigens were approved and named according to the serologic, genetic, biochemical and cell biological evidence presented. RESULTS: Seven new blood group systems, KANNO (defined numerically as ISBT 037), SID (038), CTL2 (039), PEL (040), MAM (041), EMM (042) and ABCC1 (043) were ratified. Two (039 and 043) were de novo discoveries, and the remainder comprised reported antigens where the causal genes were previously unknown. A further 15 blood group antigens were added to the existing blood group systems: MNS (002), RH (004), LU (005), DI (010), SC (013), GE (020), KN (022), JMH (026) and RHAG (030). CONCLUSION: The ISBT now recognizes 378 antigens, of which 345 are clustered within 43 blood group systems while 33 still have an unknown genetic basis. The ongoing discovery of new blood group systems and antigens underscores the diverse and complex biology of the red cell membrane. The WP continues to update the blood group antigen tables and the allele nomenclature tables. These can be found on the ISBT website (http://www.isbtweb.org/working-parties/red-cell-immunogenetics-and-blood-group-terminology/).


Assuntos
Antígenos de Grupos Sanguíneos , COVID-19 , Eritrócitos , Humanos , Antígenos de Grupos Sanguíneos/genética , Transfusão de Sangue , Imunogenética , Pandemias , Eritrócitos/imunologia
16.
Int J Mol Sci ; 23(7)2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35409292

RESUMO

The Sda histo-blood group antigen (GalNAcß1-4(NeuAcα2-3)Galß-R) is implicated in various infections and constitutes a potential biomarker for colon cancer. Sd(a−) individuals (2−4% of Europeans) may produce anti-Sda, which can lead to incompatible blood transfusions, especially if donors with the high-expressing Sd(a++)/Cad phenotype are involved. We previously reported the association of B4GALNT2 mutations with Sd(a−), which established the SID blood-group system. The present study provides causal proof underpinning this correlation. Sd(a−) HEK293 cells were transfected with different B4GALNT2 constructs and evaluated by immunostaining and glycoproteomics. The predominant SIDnull candidate allele with rs7224888:T>C (p.Cys406Arg) abolished Sda synthesis, while this antigen was detectable as N- or O-glycans on glycoproteins following transfection of wildtype B4GALNT2. Surprisingly, two rare missense variants, rs148441237:A>G and rs61743617:C>T, found in a Sd(a−) compound heterozygote, gave results similar to wildtype. To elucidate on whether Sd(a++)/Cad also depends on B4GALNT2 alterations, this gene was sequenced in five individuals. No Cad-specific changes were identified, but a detailed erythroid Cad glycoprotein profile was obtained, especially for glycophorin-A (GLPA) O-glycosylation, equilibrative nucleoside transporter 1 (S29A1) O-glycosylation, and band 3 anion transport protein (B3AT) N-glycosylation. In conclusion, the p.Cys406Arg ß4GalNAc-T2 variant causes Sda-deficiency in humans, while the enigmatic Cad phenotype remains unresolved, albeit further characterized.


Assuntos
Antígenos de Grupos Sanguíneos , N-Acetilgalactosaminiltransferases , Antígenos de Grupos Sanguíneos/genética , Células HEK293 , Humanos , N-Acetilgalactosaminiltransferases/genética , N-Acetilgalactosaminiltransferases/metabolismo , Fenótipo
18.
Hemasphere ; 6(2): e670, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35098039

RESUMO

In 2016, the European Hematology Association (EHA) published the EHA Roadmap for European Hematology Research 1 aiming to highlight achievements in the diagnostics and treatment of blood disorders, and to better inform European policy makers and other stakeholders about the urgent clinical and scientific needs and priorities in the field of hematology. Each section was coordinated by 1-2 section editors who were leading international experts in the field. In the 5 years that have followed, advances in the field of hematology have been plentiful. As such, EHA is pleased to present an updated Research Roadmap, now including eleven sections, each of which will be published separately. The updated EHA Research Roadmap identifies the most urgent priorities in hematology research and clinical science, therefore supporting a more informed, focused, and ideally a more funded future for European hematology research. The 11 EHA Research Roadmap sections include Normal Hematopoiesis; Malignant Lymphoid Diseases; Malignant Myeloid Diseases; Anemias and Related Diseases; Platelet Disorders; Blood Coagulation and Hemostatic Disorders; Transfusion Medicine; Infections in Hematology; Hematopoietic Stem Cell Transplantation; CAR-T and Other Cell-based Immune Therapies; and Gene Therapy.

19.
Transfus Med ; 32(2): 168-174, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33987889

RESUMO

OBJECTIVE: To evaluate the effect of platelet:erythrocyte (P:E) ratios on Plasmodium falciparum erythrocyte invasion. BACKGROUND: Recent reports have shown that platelets are directly involved in the immune response towards P. falciparum during erythrocyte invasion. However, the literature both supports and conflicts with a role for platelets in limiting invasion. Also, the effect of platelet numbers on invasion (parasitemia) has not been thoroughly investigated. METHODS/MATERIALS: The P. falciparum strains FCR3S1.2 and W2mef were cultured with group O erythrocytes. The cultures were synchronised and supplemented with pooled platelets at P:E ratios ranging from 1:100 to 1:2. Parasitemia was measured at 40 h by flow cytometry and by microscopy of blood smears. RESULTS: A linear relationship was observed between reduced invasion and increased platelet numbers at P:E ratios ranging from 1:100 to 1:20. However, this effect was reversed at lower ratios (1:10-1:2). Microscopic evaluation revealed aggregation and attachment of platelets to erythrocytes, but not specifically to parasitised erythrocytes. CONCLUSION: We have shown that under physiological P:E ratios (approx. 1:10-1:40), platelets inhibited P. falciparum invasion in a dose-dependent manner. At ratios of 1:10 and below, platelets did not further increase the inhibitory effect and, although the trend was reversed, inhibition was still maintained.


Assuntos
Malária Falciparum , Plasmodium falciparum , Plaquetas , Eritrócitos , Humanos , Parasitemia
20.
Vox Sang ; 117(2): 157-165, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34155647

RESUMO

BACKGROUND AND OBJECTIVES: Non-invasive assays for predicting foetal blood group status in pregnancy serve as valuable clinical tools in the management of pregnancies at risk of detrimental consequences due to blood group antigen incompatibility. To secure clinical applicability, assays for non-invasive prenatal testing of foetal blood groups need to follow strict rules for validation and quality assurance. Here, we present a multi-national position paper with specific recommendations for validation and quality assurance for such assays and discuss their risk classification according to EU regulations. MATERIALS AND METHODS: We reviewed the literature covering validation for in-vitro diagnostic (IVD) assays in general and for non-invasive foetal RHD genotyping in particular. Recommendations were based on the result of discussions between co-authors. RESULTS: In relation to Annex VIII of the In-Vitro-Diagnostic Medical Device Regulation 2017/746 of the European Parliament and the Council, assays for non-invasive prenatal testing of foetal blood groups are risk class D devices. In our opinion, screening for targeted anti-D prophylaxis for non-immunized RhD negative women should be placed under risk class C. To ensure high quality of non-invasive foetal blood group assays within and beyond the European Union, we present specific recommendations for validation and quality assurance in terms of analytical detection limit, range and linearity, precision, robustness, pre-analytics and use of controls in routine testing. With respect to immunized women, different requirements for validation and IVD risk classification are discussed. CONCLUSION: These recommendations should be followed to ensure appropriate assay performance and applicability for clinical use of both commercial and in-house assays.


Assuntos
Antígenos de Grupos Sanguíneos , Antígenos de Grupos Sanguíneos/genética , Feminino , Sangue Fetal , Feto , Genótipo , Humanos , Gravidez , Diagnóstico Pré-Natal , Sistema do Grupo Sanguíneo Rh-Hr/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...